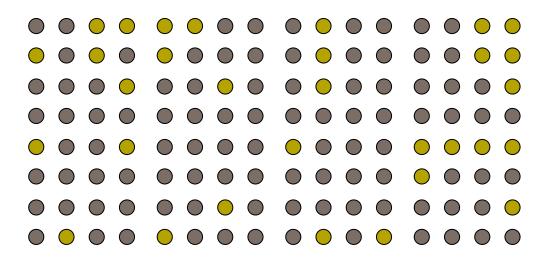


The quantum threat to financial services

Michele Mosca

Co-Founder, Institute for Quantum Computing University of Waterloo

What is a quantum computer?

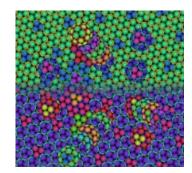

- What is a *classical* computer?
- A device that encodes information in an array of bits, manipulate those bits according to simple rules

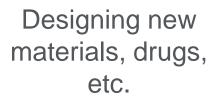
"I've always wanted to peak under the hood of one of these bad boys."

$$\bullet = 0 \qquad \bullet = 1$$

What is a quantum computer?

- What is a *quantum* computer?
- A device that encodes information in an array of bits, and can manipulate those bits according to simple quantum rules

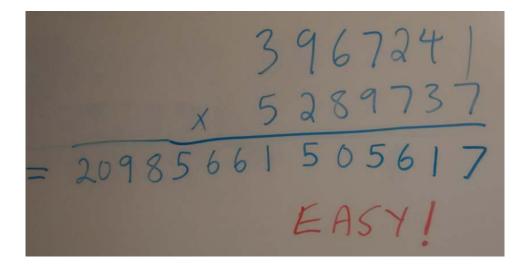

 $\bullet = 0$ $\bullet = 1$

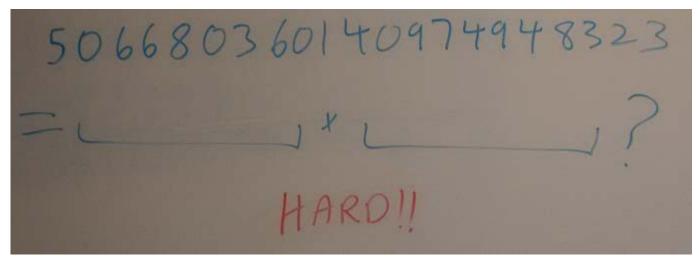


"I've always wanted to peak under the hood of one of these bad boys."

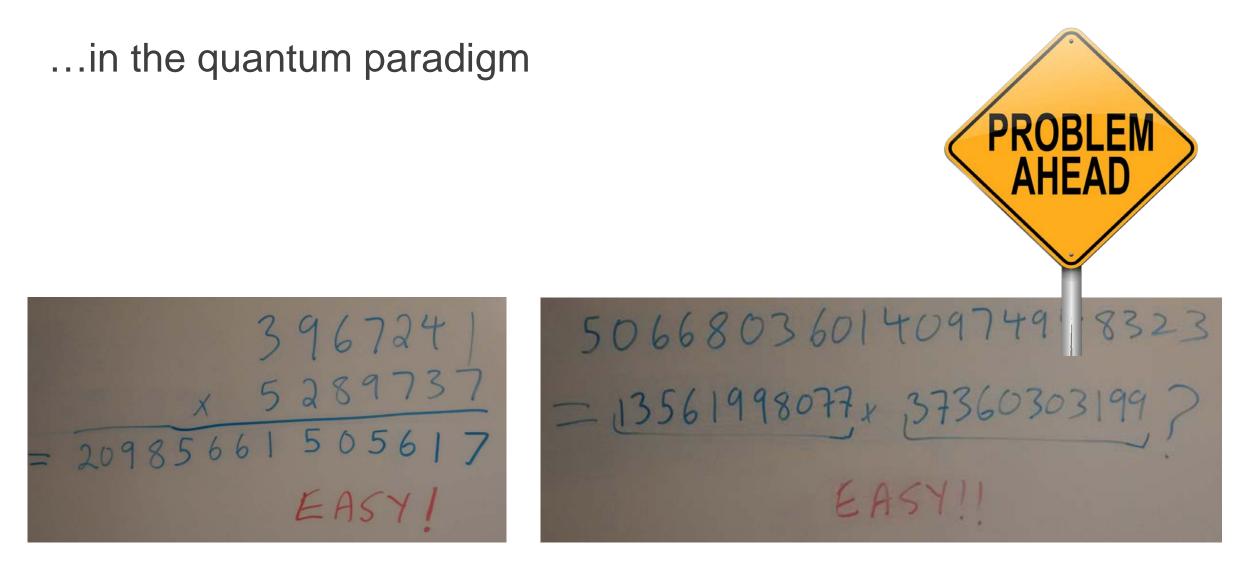
Quantum paradigm brings new possibilities

Optimizing


Sensing and measuring



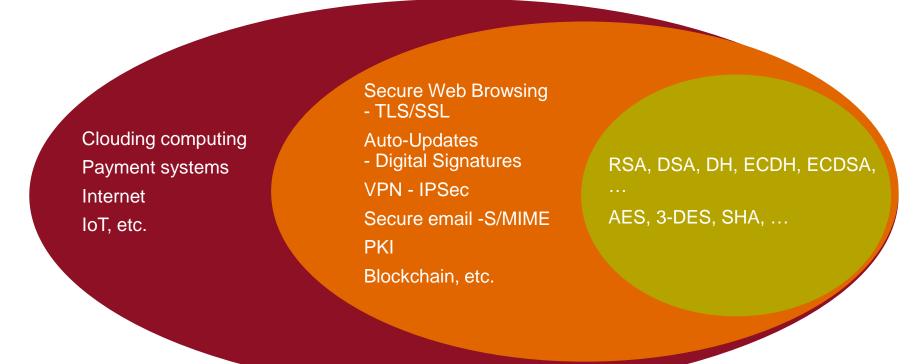
What else???


But...while in the old paradigm

Encrypting is easy

Codebreaking is hard

Encrypting is easy


Codebreaking is easy!

How secure will our current crypto algorithms be?

Algorithm	Key Length	Security level (Conventional Computer)	Security level (Quantum Computer)
RSA-1024	1024 bits	80 bits	~ <mark>0</mark> bits
RSA-2048	2048 bits	112 bits	~ <mark>0</mark> bits
ECC-256	256 bits	128 bits	~ <mark>0</mark> bits
ECC-384	384 bits	192 bits	~ <mark>0</mark> bits
AES-128	128 bits	128 bits	~ <mark>64</mark> bits
AES-256	256 bits	256 bits	~128 bits

What will be affected?

Products, services, business functions that rely on security products will either stop functioning or not provide the expected levels of security

What will be affected?

Products, services, business functions that rely on security products will either stop functioning or not provide the expected levels of security

Do we need to worry now?

Depends on:

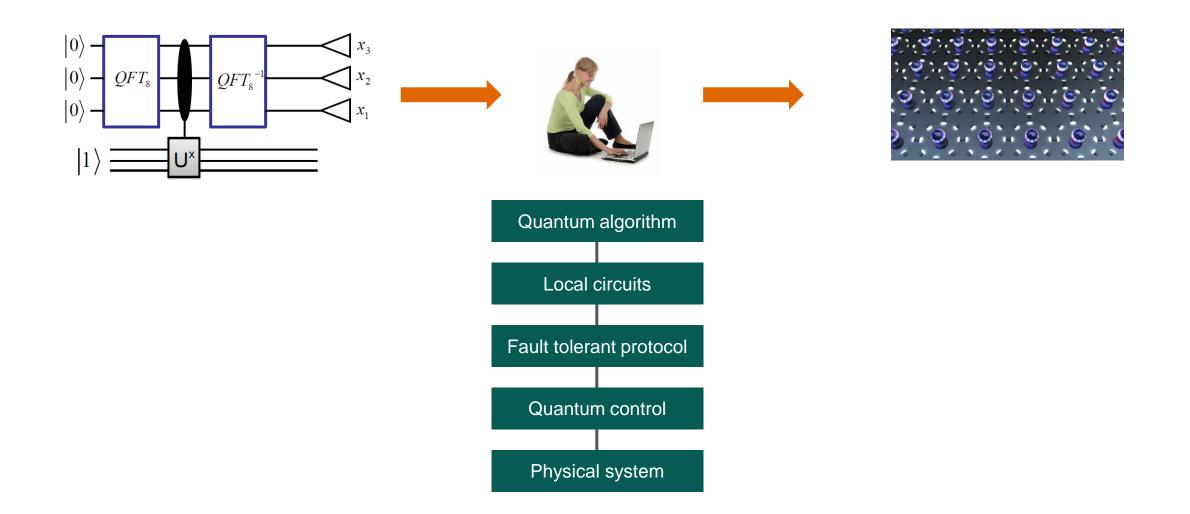
- How long do you need your cryptographic keys to be secure? *security shelf-life* (x years)
- How much time will it take to re-tool the existing infrastructure with large-scale quantum-safe solution? (y years) – *migration time*
- How long will it take for a large-scale quantum computer to be built (or for any other relevant advance)? (z years) – collapse time

"Theorem": If x + y > z, then worry

7

Business bottom line

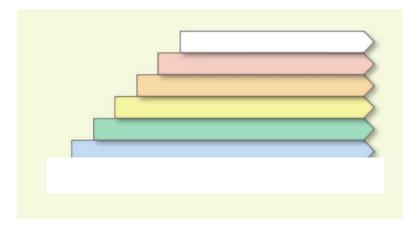
Fact: If x+y>z, then you will not be able to provide the required x years of security


Fact: If y>z then cyber systems will collapse in z years with no quick fix

Fact: Rushing "y" will be expensive, disruptive, and lead to vulnerable implementations

Prediction: In the next 6-18 months, organizations will be differentiated by whether or not they have a well-articulated quantum risk management plan

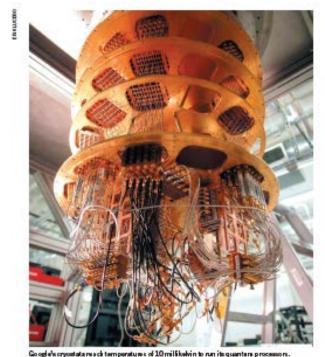
So what is z (threat timeline)?


How large of a quantum computer is needed?

How close are we to having sufficient quantum resources?

REVIEW SCIENCE VOL 339 8 MARCH 2013 Superconducting Circuits for Quantum Information: An Outlook

M. H. Devoret^{1,2} and R. J. Schoelkopf¹*

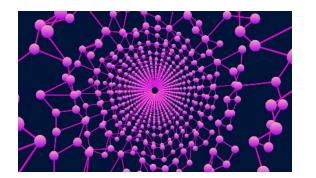


Non-fault-tolerant quantum devices

Not a known threat to cryptography

- Can they capture some of the power of quantum computation?
- Can they simulate themselves or similar systems faster/cheaper than conventional computers?
- Can they solve *useful* problems better than conventional devices?

"Similarly, although there is no proof today that imperfect quantum machines can compute fast enough to solve practical problems, that may change."

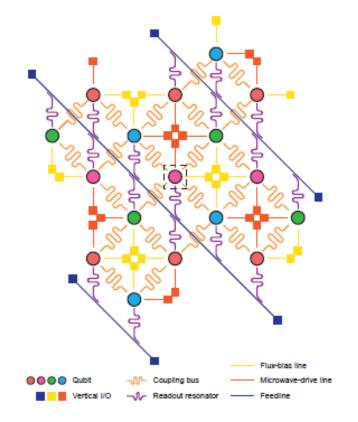


Commercialize early quantum technologies

Masoud Mohseni, Peter Read, Hartmut Neven and colleagues at Google's Quantum AI Laboratory set out investment opportunities on the road to the ultimate quantum machines.

Scalable fault-tolerant quantum computer

Known to solve many problems previously thought to be intractable



Scalable quantum circuit and control for a superconducting surface code

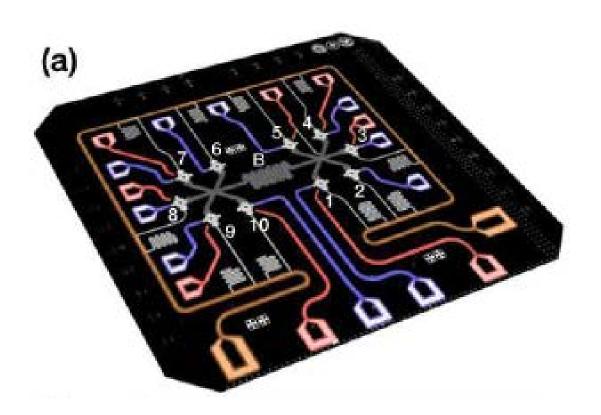
R. Versluis,^{1, 2} S. Poletto,^{2, 3} N. Khammassi,⁴ N. Haider,^{1, 2} D. J. Michalak,⁵ A. Bruno,^{2, 3} K. Bertels,^{4, 3} and L. DiCarlo^{2, 3}

arXiv:1612.08208v1 [quant-ph] 24 Dec 2016



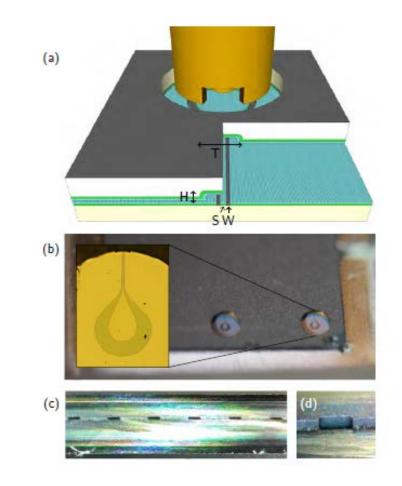
www.nature.com/npjqi All rights reserved 2056-6387/16

PERSPECTIVE OPEN Multilayer microwave integrated quantum circuits for scalable quantum computing


Teresa Brecht¹, Wolfgang Pfaff¹, Chen Wang¹, Yiwen Chu¹, Luigi Frunzio¹, Michel H Devoret¹ and Robert J Schoelkopf¹

10-qubit entanglement and parallel logic operations with a superconducting circuit

Chao Song^{1,2},* Kai Xu^{1,2},* Wuxin Liu¹, Chuiping Yang³, Shi-Biao Zheng⁴,[†] Hui Deng⁵, Qiwei Xie⁶, Keqiang Huang⁵, Qiujiang Guo¹, Libo Zhang¹, Pengfei Zhang¹, Da Xu¹, Dongning Zheng⁵, Xiaobo Zhu²,[‡] H. Wang^{1,2},[§] Y.-A. Chen², C.-Y. Lu², Siyuan Han⁷, and J.-W. Pan²


arXiv:1703.10302v1 [quant-ph] 30 Mar 2017

Thermocompression Bonding Technology for Multilayer Superconducting Quantum Circuits

C.R. H. McRae,^{1,2} J. H. Béjanin,^{1,2} Z. Pagel,^{1, n)} A. O. Abdallah,^{1,2} T. G. McConkey,^{1,3} C. T. Earnest,^{1,2} J. R. Rinehart,^{1,2} and M. Mariantoni^{1,2, b)}

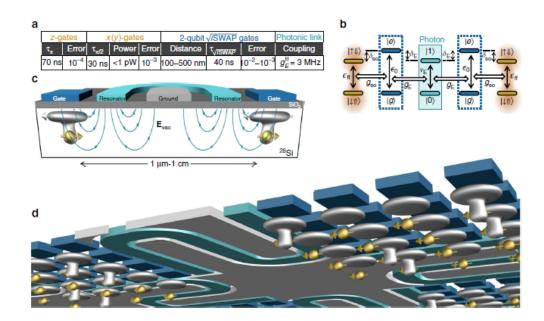
arXiv:1705.02435v1 [physics.app-ph] 6 May 2017

PHYS ORG

IBM builds its most powerful universal quantum computing processors

May 17, 2017

Published online: 06 September 2017


ARTICLE

DOI: 10.1038/s41467-017-00378-x

OPEN

Silicon quantum processor with robust long-distance qubit couplings

Guilherme Tosi ¹, Fahd A. Mohiyaddin^{1,3}, Vivien Schmitt¹, Stefanie Tenberg¹, Rajib Rahman², Gerhard Klimeck² & Andrea Morello ¹

What is 'z'?

Mosca:

[Oxford, 1996]: *"20 qubits in 20 years"* [NIST April 2015, ISACA September 2015]: *"1/7 chance of breaking RSA-2048 by 2026, ½ chance by 2031"*

[London, September 2017]: "1/6 chance within 10 years"

S. Benjamin:

[London, September 2017]: Speculates that if someone is willing to "go Manhattan project" then "maybe 6-12 years"

Microsoft Research

[October 2015]: *Recent improvements in control of quantum systems make it seem feasible to finally build a quantum computer* within a decade

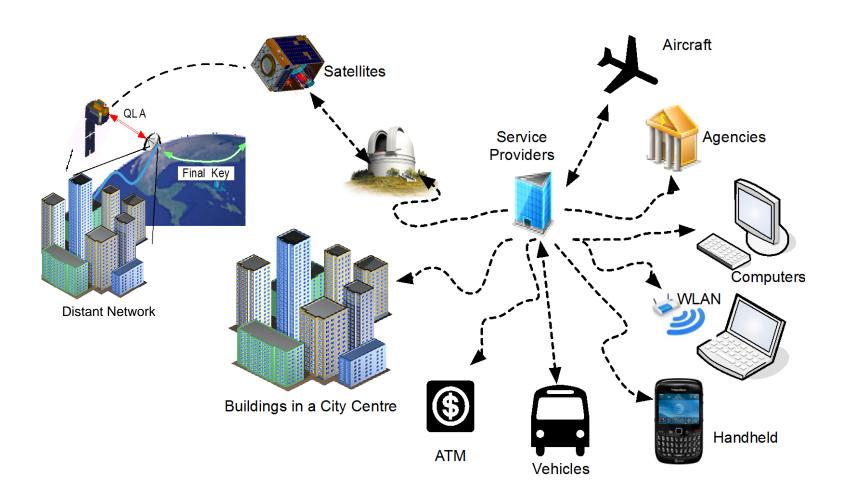
What is y (migration timeline)?

Quantum-safe cryptographic tool-chest

Conventional quantum-safe cryptography

a.k.a. Quantum Resistant Algorithms or Post-Quantum Cryptography

- Deployable without quantum technologies
- Believed/hoped to be secure against quantum computer attacks of the future


Quantum cryptography

- Requires some quantum technologies (less than a largescale quantum computer)
- Typically no computational assumptions and thus known to be cryptographically secure against quantum attacks

Both sets of cryptographic tools can work very well together in quantum-safe cryptographic ecosystem

Quantum Internet – The Long Term Vision

Qubit distribution with moving systems: satellites, aircraft, vehicles, ships, handheld

Ongoing work to develop standards and certifications for these tools

- Are these algorithms actually secure against quantum attacks?
- Will these systems interoperate?
- Are the protocols implemented correctly?
- How can we be sure the quantum apparatus is behaving correctly?

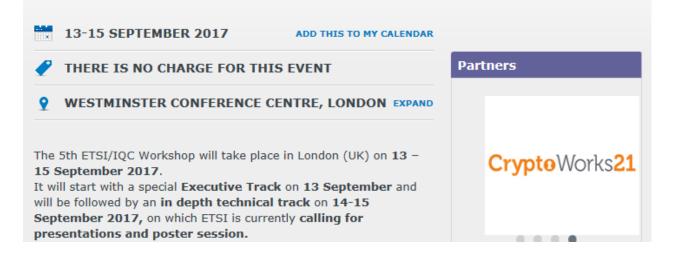
Special-Focus Conference Content

Following suggestions from the survey responses of previous attendees and the guidance of our industry expert program committee, the conference features content in six key areas:

Global Cryptographic Module Validation: ICMC will continue its strong focus on North American validation programs and we've added a half day on global validation with reports from various international verification bodies, and prospects for an international validation (iCMVP) scheme. More info.

Open Source Cryptography: OpenSSL is the most widely used encryption software library in the world, but last year saw threats to its security and future certification. We'll cover efforts to audit and improve the security of OS encryption. More info.

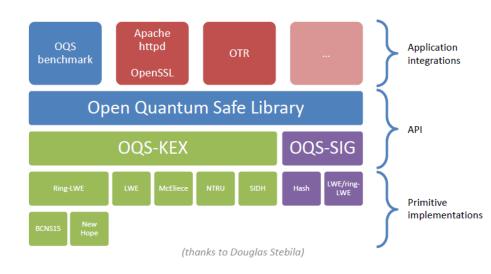
Common Criteria: The crypto certification community is widely involved in Common Criteria, so ICMC provides a great opportunity for discussions on the prospect for CC in Crypto, and efforts to bring CC to broader user base. More info.

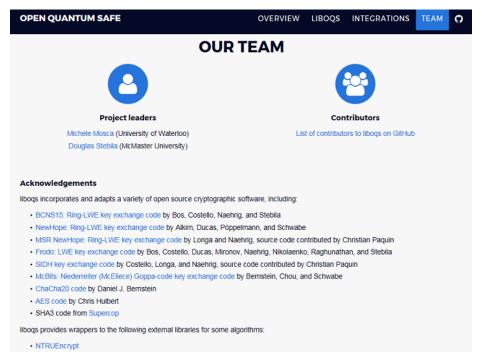


Quantum Threats and Quantum-Safe Crypto: Many approved algorithms can be easily broken by theoretical quantum computers. We've scheduled a day's worth of content focused on this emerging threat, as well as the transition to standardized quantum-safe algorithms. More info.

ETSI / IQC Quantum Safe Workshop

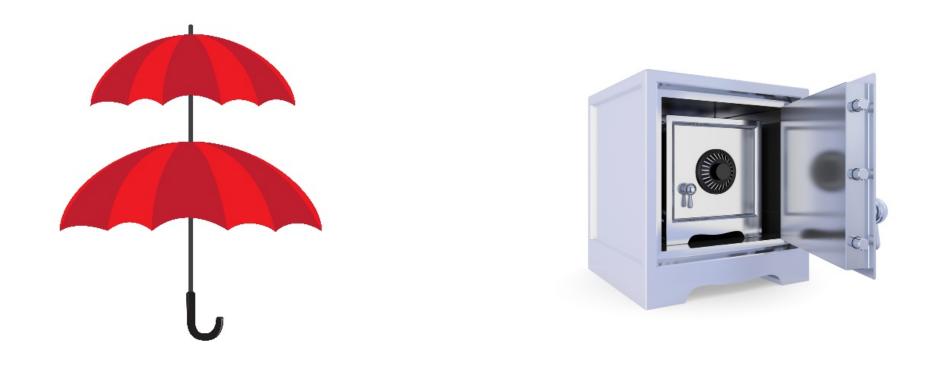
CYBER . CYBER QSC ToR


Terms of Reference for ETSI TC Cyber Working Group for Quantum-Safe Cryptography (ETSI TC


Cyber WG-QSC)

Approved at ETSI CYBER#09, 02/17

Testing new tools


openquantumsafe.org

"But we're risk-averse!"

Hybrid deployment of quantum-safe with currently deployed crypto provides strictly better security

Quantum Risk Fundamentals

Identify:

- Your organization's reliance on cryptography
- The sources and types of technology in use

Track:

- The state of quantum technology development
- Advances in the development of quantum-safe technologies and algorithms

Manage:

- IT procurement to communicate the issue to vendors
- Technology upgrades and lifecycles to facilitate the incorporation of quantumsafe algorithms

Security is a choice

Problematic choices:

- "Do nothing: my vendors will take care of this for me"
- "Do nothing until NIST standardization is done"
- "Get it over with"

Security is a choice

Does your organization have a plan? Who is responsible for it? Do your vendors have a plan? Does your industry have plan? Are these plans coordinated?

Historic opportunity

Thank you!

Comments, questions and feedback are very welcome

Michele Mosca University Research Chair, Faculty of Mathematics Co-Founder, Institute for Quantum Computing <u>www.iqc.ca/~mmosca</u> Director, CryptoWorks21 <u>www.cryptoworks21.com</u> University of Waterloo <u>mmosca@uwaterloo.ca</u> CEO, evolutionQ Inc. <u>michele.mosca@evolutionq.com</u>

Questions